SOME EXTENSIONS OF WEAKLY MIXING FLOWS

BY REUVEN PELEG*

ABSTRACT

Using a technique of R. Ellis we prove the existence of many weakly mixing (w.m.) flows which are distal extensions of a given w.m. flow. Then we indicate two w.m. minimal flows whose product has a minimal non-w.m. subflow.

0. Introduction

A flow (X,ψ) is a compact metric space X with a surjective homeomorphism $\psi: X \to X$. When no confusion occurs we use X rather than (X, ψ) . If $Y \subseteq X$ is a ψ -invariant closed set then (Y,ψ) is a subflow of (X,ψ) . The orbit of $x \in X$ is the set $\{\psi^n(x): n = 0, \pm 1, \pm 2, \cdots\}$. X is minimal if every orbit is dense and it is semi-simple if every orbit closure is a minimal subflow. X is ergodic if there exists a dense orbit. Whenever $(X \times X, \psi \times \psi)$ is ergodic X is weakly mixing [3].

Let π be a continuous function from X onto Y. π is a homomorphism of the flows (X, ψ) and (Y, ϕ) if $\pi \psi = \phi$. (X, ψ) is called an extension of its factor (Y, ϕ) . Two points $x_1, x_2 \in X$ are proximal if the orbit closure of (x_1, x_2) in $(X \times X, \psi \times \psi)$ intersects the diagonal. X is distal if every point is proximal only to itself. An extension $\pi: (X, \psi) \to (Y, \phi)$ is a distal extension if no two different points of X in the same fiber over Y are proximal. Two minimal flows (X, ψ) and (Y, ϕ) are disjoint [3] if their product $(X \times Y, \psi \times \phi)$ is minimal. C, R, and Z denote, respectively, the unit circle, the real numbers, and the integers.

It was proved in [3] that every w.m. minimal flow is disjoint from every distal flow. This shows that the distal flows are extremely different from the w.m. flows. Thus, the question arises whether a distal extension of a w.m. flow can still be

^{*} This work was done under the helpful supervision of Professor H. Furstenberg as a part of the author's Ph.D. thesis to be submitted to the Hebrew University of Jerusalem.

w.m. Theorem 1 asserts by a category argument that this is in fact usually the case. It is easy to show that the product of two w.m. minimal flows is w.m. In [5] Veech asks whether every minimal subflow of such a product is w.m. Lemma 3 provides, again by a category argument, a counter-example. We do not know whether such a product contains at all minimal w.m. subflows. (A positive answer would imply the existence of a universal w.m. minimal but non-metric flow, i.e., a w.m. minimal flow which has every w.m. minimal flow as its factor). We introduce the weakly mixing functions and find in Lemma 5 some conditions for the product of a w.m. function with an almost periodic function to be w.m. A concrete example for the situations dealt with in Theorem 1, Lemma 3, and Lemma 5 follows Lemma 5. Finally, we bring a category theorem concerning the disjointness of extensions.

1. Extensions

Now we introduce the set-up of [1]. Let G be a complete metric topological group and assume (X, ψ) to be a G-extension of (Y, ϕ) (i.e. G acts on X as a group of homeomorphisms commuting with ψ , Y = X/G and ϕ is induced by ψ) with $\pi: X \to Y$. Provide C(Y,G), the set of continuous functions from Y to G, with the metric G of uniform convergence and call G admissible if the following conditions are fulfilled

- i) For every $x \in X$ with a dense orbit and open sets $V_1, \dots, V_n \subset G$ there exists an integer k such that whenever $\{W_1, \dots, W_k\} \subseteq \{V_1, \dots, V_n\}$ then $G_x W_1 \dots W_k = G$ where $G_x = \{g | gx = x\}$.
- ii) If $u \in C(Y, G)$ and $\varepsilon > 0$ then there exists $\delta > 0$ so that every function w' from some finite subset $F \subset Y$ to G which satisfies $d(u(y), w'(y)) < \delta$ $(y \in F)$ has an extension $w \in C(Y, G)$ with $d(u, w) < \varepsilon$.

Proposition 2 in [1] asserts that every connected Lie group whose left and right uniform structures coincide is admissible.

Every $u \in C(Y,G)$ induces a homeomorphism \bar{u} on X by: $\bar{u}(x) = u[\phi \pi(x)]\psi(x)$. Lemma 1 of [1] gives the powers of \bar{u}

$$\bar{u}^n(x) = u(\phi^n y) \cdots u(\phi y) \psi^n(x) \quad \text{for } n > 0$$
and
$$\bar{u}^n(x) = u(\psi^{n+1} y)^{-1} \cdots u(y)^{-1} \psi^n(x) \quad \text{for } n < 0$$
where
$$y = \pi(x).$$

Thus (x,\bar{u}) is an extension of (Y, ϕ) with the homomorphism π .

Let (Y, ϕ) be a w.m. non-trivial flow (not necessarily minimal). The following theorem is a close relative of Lemma 2 in [1]:

THEOREM 1. If G is admissible then there exists a comeager set $W \subset C(Y,G)$ such that for every $u \in W(X,\overline{u})$ is w.m.

PROOF. Since Y is w.m. we can find a point $(y_0, y_1) \in Y \times Y$ with a dense orbit. Let x_0, x_1 satisfy $\pi(x_i) = y_i$ (i = 0,1) and let $\mathfrak{U} = \{U_i\}$ be a countable base for $X \times X$. For every $U \in \mathfrak{U}$ define $E(U) = \{u \in C(Y,G)/\exists n : \bar{u}^n(x_0,x_1) \in U\}$. The formulae for \bar{u}^n imply immediately that E(U) is open in C(Y,G).

We proceed to show that E(U) is dense. Let $u \in C(Y,G)$ and $\varepsilon > 0$. Take the suitable δ of condition (ii) and choose an open covering V_1, \dots, V_n of $u(Y) \cup u(Y)^{-1}$ with $\operatorname{diam}(V_i) < \delta$ ($i = 1, \dots, n$). By (i) we may find an integer k such that $G_{x_i} W_1 \cdots W_k = G$ if $\{W_1, \dots, W_k\} \subset \{V_1, \dots, V_n\}$ (i = 0, 1). (X, ψ) is a G-extension of (Y, ϕ) thus π is open and there exists an integer p with $\phi^p(y_0, y_1) \in \pi(U)$. Since Y has no isolated points we may assume $|p| \ge k$ and for sake of convenience we suppose p is positive. Let $W_j^0, W_j^1 \in \{V_1, \dots, V_n\}$ satisfy $u(\phi^j y_0) \in W_j^0, u(\phi^j y_1) \in W_j^1$ ($j = 1, \dots, p$). Take $g_0, g_1 \in G$ to satisfy $\psi^p(g_0 x_0, g_1 x_1) \in U$. Since $G = G_{x_0} W_1^0 \cdots W_p^0 = G_{x_1} W_1^1 \cdots W_p^1$ g_0 and g_1 have representations: $g_0 = g_0^0 g_1^0 \cdots g_p^0$ $g_1 = g_0^1 g_1^1 \cdots g_p^1$ where $g_0^i \in G_{x_i}$ and $g_j^i \in W_j^i$ ($j = 1, \dots, p$; i = 0, 1). Define w' on $\{\phi^j y_0, \phi^j y_1/j = 1, \dots, p\}$ by $w'(\phi^j y_i) = g_j^i$. w' is well defined and by (ii) it has an extension w whose distance from u is less than ε . Clearly $w \in E(U)$.

The desired W is obtained now by taking $\bigcap \{E(U)/U \in \mathfrak{U}\}\$.

COROLLARY. If Y is minimal and G is admissible and abelian then (X,\bar{u}) $(\bar{u} \in W)$ is a w.m. minimal G-extension of (Y,ϕ) .

PROOF. (X, \bar{u}) is ergodic and semisimple so it has to be minimal.

LEMMA. 2. Let π and θ be respectively homomorphisms of the minimal flows X and Z onto Y. If X is a distal extension then $H:\{(x,z)/\pi(x)=\theta(z)\}$ is semisimple.

PROOF. Assume $\pi(x_0) = \theta(z_0)$. It is enough to find a minimal ideal \tilde{I} in E(H) — the enveloping semigroup of H ([2]) and an idempotent $\bar{u} \in \tilde{I}$ which satisfies $\bar{u}(x_0,z_0) = (x_0,z_0)$.

The given commutative diagram

$$\begin{array}{ccc}
H & \xrightarrow{\sigma_2} & Z \\
\sigma_1 & \downarrow & \downarrow & \theta \\
X & \xrightarrow{\pi} & Y
\end{array}$$

where σ_i are the projections induces a commutative diagram of homomorphisms between the corresponding enveloping semigroups

$$\begin{array}{ccc} E(H) & \xrightarrow{\tilde{\sigma}_2} & E(Z) \\ \tilde{\sigma}_1 & & & \downarrow & \tilde{\theta} \\ E(X) & \xrightarrow{\tilde{\pi}} & E(Y) \end{array}$$

Let I be a minimal ideal in E(Z) and let $u \in I$ satisfy $u(z_0) = z_0$. Take \tilde{I} to be a minimal ideal in $\tilde{\sigma}_2^{-1}(I)$ and $\tilde{u} \in \tilde{I}$ an idempotent over u ($\tilde{\sigma}_2(\tilde{u}) = u$). Denote $\tilde{u}(x_0,z_0)=(x',z')$. Now, $z'=\sigma_2[\tilde{u}(x_0,z_0)]=\tilde{\sigma}_2(\tilde{u})[\sigma_2(x_0,z_0)]=z_0$ and similarly $x'=\tilde{\sigma}_1(\tilde{u})(x_0)$. Since $\tilde{\sigma}_1(\tilde{u})$ is an idempotent in E(X), x_0 and x' are proximal, but $\pi(x')=\pi[\tilde{\sigma}_1(\tilde{u})(x_0)]=\tilde{\pi}\tilde{\sigma}_1(\tilde{u})[\pi(x_0)]=\tilde{\theta}\tilde{\sigma}_2(\tilde{u})[\pi(x_0)]=\tilde{\theta}(u)[\theta(z_0)]=\tilde{\theta}(z_0)=\pi(x_0)$ and X is a distal extension of Y so that $x_0=x'$ and $\tilde{u}(x_0,z_0)=(x_0,z_0)$. Lemma 3 answers a question posed by Veech

LEMMA 3. There exists two w.m.minimal flows whose product has a minimal non-w.m. subflow.

PROOF. Take T to be the unit circle and (Y,ϕ) any non-trivial w.m. minimal flow. Define $X = Y \times T$, $\psi(y,t) = (\phi y,t)$ and s(y,t) = (y,st) $(s \in T)$. Thus (X,ψ) is a T-extension of (Y,ϕ) . Now let $u \in W \cap (-W)$ where W is the set described in Theorem 1. $x_1 = (X,\bar{u})$ and $X_2 = (X,-\bar{u})$ are w.m. minimal T-extensions of Y (the homomorphisms are the projections π_i).

 $X_1 \times X_2$ is the product of two w.m. minimal flows so it is w.m.

PROOF. We proceed by induction:

Take $\Delta = \{(x_1, x_2)/\pi_1 x_1 = \pi_2 x_2\}$. By Lemma 2 Δ is semisimple but $\tau(\langle y, \gamma \rangle, \langle y, \gamma' \rangle) = \gamma/\gamma'$ shows that (-1) is an eigenvalue for every minimal subflow of Δ so Δ contains no minimal w.m. subflow.

LEMMA 4. The n-torus T^n supports a w.m. minimal flow $(2 \le n \le \aleph_0)$.

For n=2 Kolmogorov announced in [4] the existence of a minimal continuous flow (T^2, R) with no continuous eigenfunctions. By [5] this implies w.m. Now one can show that for a suitable α $(T^2, Z\alpha)$ is minimal $(Z\alpha)$ is regarded as a subgroup of the group of homeomorphisms R). Since $Z\alpha$ is syndetic in R with its usual topology $P(T^2, Z\alpha) = P(T^2, R)$ and by [5] $(T^2, Z\alpha)$ is w.m.

The proof of the preceding Lemma indicates the induction step and for \aleph_0 the flow is obtained by taking an inverse limit.

2. Weakly mixing functions

Call a function f from Z to the unit circle C w.m. if the flow X_f it generates is w.m. $(X_f$ is the weak closure of the translates of f). We denote by C_{λ} $(\lambda \in C)$ the closed group generated by λ . The next lemma is a partial answer to the question when the product of a w.m. minimal function with an almost periodic function is w.m.

LEMMA 5. Let f be a w.m. minimal function. If $1 \neq \lambda \in C$ and $g(n) = \lambda^n f(n)$ is w.m. then $C_{\lambda} f \cap X_{f} = \{f\}$. When λ is of prime order the converse holds too.

PROOF. Define $\delta: X_f \times C_\lambda \to X_g$ by $\delta(h,\gamma)(n) = \lambda^n \gamma h(n)$. Since $X_f \times C$ is minimal [3] δ is a homomorphism of $X_f \times C_\lambda$ onto X_g . Obviously δ is one-to-one iff $C_\lambda f \cap X_f = \{f\}$.

Now if g is w.m. δ is not 1-1 so $C_{\lambda}f \cap X_{f\neq} \supseteq \{f\}$.

If λ has a prime order and g is not w.m. then X_g has an equicontinuous factor which must be a factor of C_{λ} and therefore coincide with it. Assume $\tau: X_g \to C_{\lambda}$ with $\tau(g) = 1$, and define $\rho: X_g \to X_f$ by $\rho(g')(n) = [\tau(g')\lambda^n]^{-1}g'(n)$. Since X_f is w.m. $X_f \times C_{\lambda}$ is a factor of X_g and $\delta^{-1} = (\rho, \tau)$ so that δ is one-to-one and $C_{\lambda}f \cap X_f = \{f\}$.

We are going now to build a w.m. sequence f such that $(-1)^n f(n)$ is w.m.

Let (Y,T) be a w.m. minimal flow. $X = Y \times \{-1,1\}$ and $S(y,\varepsilon) = (Ty,r(y)\varepsilon)$ where r is a continuous function from Y to $\{-1,1\}$. Thus (X,S) is a group extension of (Y,T). By [6] (X,S) is minimal iff the equation g(Ty) = r(y)g(y) has no continuous solution $g:Y \to \{-1,1\}$. Assume now that (X,S) is minimal but not w.m. Then (X,S) has an eigenfunction $\psi(Sx) = e^{i\lambda}\psi(x)$. Define $\tau(y) = \psi(y,1) \cdot \psi(y,-1)$, then $\tau(Ty) = e^{2i\lambda}\tau(y)$ and since Y is w.m. $e^{2i\lambda} = 1$ so that $\lambda = \pi$. Now ψ is a non-constant invariant function for (X,S^2) which is a group extension of (Y,T^2) so by [6] the equation $g(T^2y) = r(y)r(Ty)g(y)$ has a continuous solution $g:Y \to \{-1,1\}$. Define $h = Tg \times g = Tg/g$. Then $Tr/r = Tr \times r = Th/h$ and

T(r/h) = r/h. Thus r/h is constant and since r is not of the form Tg/g h = -r, we have proved the following

LEMMA 6. (X,S) is weakly mixing minimal iff the equations Tg = rg and Tg = -rg are both unsolvable.

Consider now Y to be a subflow of $\{-1,1\}^Z$, r the projection on the first coordinate $(r(y) = y_0)$ and let $a = (\cdots a_{-1}, a_0, a_1, \cdots) \in Y$. If g is a solution of g(Ty) = r(y)g(y) (here T is the shift) then

$$g(Ta) = a_0 g(a), \dots, g(T^r a) = a_{r-1} g(T^{r-1} a)$$

thence $g(T'a) = a_0 \cdots a_{r-1} g(a)$. Since g is continuous with a finite range, g depends only on a finite number of coordinates: $g(y) = g(y_{-N}, \dots, y_N)$. Let B be a block of a whose length exceeds 2N+1. If B appears in a at k_1 and k_2 ($k_1 < k_2$) then

$$g(T^{k_1+N}a) = a_0 \cdots a_{k_1+N-1}g(a)$$

and

$$g(T^{k_2+N}a) = a_0 \cdots a_{k_2+N-1}g(a)$$
.

Since $T^{k_1+N}a$ and T^{k_2+N} a coincide in their central (2N+1) block the two expressions are equal and $a_0\cdots a_{k_1+N-1}=a_0\cdots a_{k_2+N-1}$ which leads to $a_{k_1}\cdots a_{k_2-1}=1$. We have shown that if the first equation is solvable then there exists an n such that if B is a block of length $\geq n$ which appears in a at k_1 and k_2 then $a_{k_1}\cdots a_{k_2-1}=1$ (Condition 1). Similarly one can show that if the second equation is solvable then $a_{k_1}\cdots a_{k_2-1}=(-1)^{k_2-k_1}$ (Condition 2). We conjecture that none of the last two conditions can hold for a w.m. sequence a but we were successful to prove it only for a spuecial sequence. Recall the w.m. sequence built in [5]. It begins with the blocks $A_0=1,-1,1$ $B_0=1,1,1$ and is built inductively by

$$A_{k+1} = A_k A_k^{(i_m)} A_k \cdots A_k A_k^{(i_2)} A_k \cdots A_k^{(i_m)} A_k$$

$$B_{k+1} = E_k B_k^{(i_m)} E_k \cdots E_k B_k^{(i_2)} E_k \cdots B_k^{(i_m)} E_k$$

where $E_k = 10 \cdots 0$, $1 < i_2 < \cdots < i_m$ are the places where 1 appears in B_k and $A_k^{(i_j)}$ is a cyclic permutation of A_k beginning at the i_j th place. By induction one can easily show that the number of (-1)'s which appears in A_k is odd. Since the block $A_k A_k$ appears in A_{k+2} the sequence a cannot satisfy condition 1. Now for every k > 0 the block 11 appears at least once in the same place in A_k and B_k . Thus

$$A_{k+1} = \cdots A_k \cdots, 1, 1, \cdots A_k$$

$$B_{k+1} = \cdots E_k \cdots, 1, 1, \cdots E_k.$$

Now we find in A_{k+2} the blocks $\cdots A_{k+1}1,1,\cdots A_k$ and $A_{k+1}\cdots A_k$. This shows that Condition 2 is not satisfied (recall that A_k is the terminal block of A_{k+1}).

The flow (X, S) is isomorphic in this case to the flow generated by the sequence $b = \cdots a_{-2}a_{-1}, a_{-1}, 1, a_0, a_0a_1\cdots$. A similar construction with -a instead of a, leads to the w.m. sequence $c = \{(-1)^ib_i\}$ which generates a w.m. minimal flow (Z, T). Now $\{\langle x, z \rangle \mid \alpha(x) = \beta(z)\}$ is minimal $(X_+^Y Z)$ and has -1 as an eigenvalue $(\alpha$ and β are the homomorphisms from X and Z res. to Y). (This provides a direct proof of Lemma 3.) A similar argument to that used in Lemma 3 yields

LEMMA 6. For every sequence $\{\lambda_i\} \subset C$ there exists a w.m. minimal function f such that $g_i(n) = \lambda_j^n f(n)$ is w.m. for every j.

3. Disjointness.

Recall finally the definition of disjointness [2]. Slight changes in the proof of Theorem 1 provide

THEOREM 7. If (Y, ψ) and (Z, θ) are minimal disjoint flows, then (X, \bar{u}) and (Z, θ) are disjoint for every \bar{u} in a certain comeager subset of C(Y, G).

REFERENCES

- 1. R. Ellis, The construction of minimal discrete flows, Amer. J. Math., 87 (1965), 564-574.
- 2. R. Ellis, and W.H. Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc., 94 (1960), 258-271.
- 3. H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.
- 4. A. N. Kolmogorov, On dynamical systems with an integral invariant on the torus, Dokl. Akad. Nauk SSSR, 93 (1953), 763-766.
 - 5. K. Petersen, Prime flows, disjointness and weakly mixing, thesis, Yale University, 1969.
- 6. W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969), 95-113.

THE HEBREW UNIVERSITY OF JERUSALEM